Main Article Content

Abstract

Purpose: This study aims to explore the impact of obesity, genetic predisposition, and comorbidities on pregnancy-related hypertension. Given the rising prevalence of maternal obesity and associated metabolic disorders, understanding how these factors contribute to hypertensive complications during pregnancy is crucial for developing effective prevention and management strategies. The study also examines the role of genetic susceptibility and pre-existing medical conditions in exacerbating hypertensive risks, emphasizing the need for a holistic approach in maternal healthcare.


Research Design and Methodology: This study employs a systematic literature review (SLR) to synthesize findings from existing research on the relationship between obesity, genetic factors, and comorbidities in relation to pregnancy-related hypertension. Relevant peer-reviewed articles from Elsevier, Emerald, Wiley, and Springer published after 2018 were analyzed to identify key trends, mechanisms, and clinical implications. The review integrates evidence from obstetrics, endocrinology, genetics, and public health to provide a comprehensive understanding of the topic.


Findings and Discussion: The study reveals that obesity significantly contributes to hypertensive disorders in pregnancy through mechanisms such as endothelial dysfunction, chronic inflammation, insulin resistance, and RAAS activation. Genetic predisposition, particularly polymorphisms in RAAS-related genes (AGT, ACE, AGTR1) and endothelial function genes (eNOS, VEGF), is strongly associated with an increased risk of hypertension. Additionally, pre-existing conditions such as diabetes mellitus, chronic hypertension, kidney disease, and autoimmune disorders further aggravate hypertensive complications.


Implications: The findings underscore the importance of early screening programs, personalized treatment approaches, and interdisciplinary prenatal care. Healthcare policymakers should develop standardized guidelines for managing hypertensive pregnancies complicated by obesity and comorbidities. The study highlights the importance of lifestyle interventions, genetic screening, and pharmacological advancements in reducing pregnancy-related hypertension risks and improving maternal-fetal health outcomes.

Keywords

Pregnancy-related hypertension Obesity Genetic predisposition Comorbidities Maternal Health

Article Details

How to Cite
Partiwi, N., & Hafid, R. N. H. (2025). Impact of obesity, genetic predisposition and comorbidities on pregnancy-related hypertension. Advances in Healthcare Research, 3(1), 16–25. https://doi.org/10.60079/ahr.v3i1.413

References

  1. Alves, F. C. R., Moreira, A., & Moutinho, O. (2024). Maternal and long-term offspring outcomes of obesity during pregnancy. Archives of Gynecology and Obstetrics, 309(6), 2315–2321. https://doi.org/10.36959/468/490
  2. August, P., & Sibai, B. M. (2022). Preeclampsia: Clinical features and diagnosis. Preeclampsia: Clinical Features and Diagnosis - UpToDate. https://www.drvaidakis.com/wp-content/uploads/2022/10/Preeclampsia-Clinical-features-and-diagnosis-UpToDate.pdf.
  3. Awazu, M. (2022). Structural and functional changes in the kidney caused by adverse fetal and neonatal environments. Molecular Biology Reports, 49(3), 2335–2344. https://doi.org/10.1007/s11033-021-06967-w
  4. Baetens, M., Van Gaever, B., Deblaere, S., De Koker, A., Meuris, L., Callewaert, N., Janssens, S., Roelens, K., Roets, E., Van Dorpe, J., Dehaene, I., & Menten, B. (2024). Advancing diagnosis and early risk assessment of preeclampsia through noninvasive cell-free DNA methylation profiling. Clinical Epigenetics, 16(1), 182. https://doi.org/10.1186/s13148-024-01798-5
  5. Bohiltea, R. E., Zugravu, C.-A., Nemescu, D., Turcan, N., Paulet, F.-P., Gherghiceanu, F., Ducu, I., & Cirstoiu, M. M. (2020). Impact of obesity on the prognosis of hypertensive disorders in pregnancy. Experimental and Therapeutic Medicine, 20(3), 2423–2428. https://doi.org/10.3892/etm.2020.8783
  6. Broséus, L., Vaiman, D., Tost, J., Martin, C. R. S., Jacobi, M., Schwartz, J. D., Béranger, R., Slama, R., Heude, B., & Lepeule, J. (2022). Maternal blood pressure associates with placental DNA methylation both directly and through alterations in cell-type composition. BMC Medicine, 20(1), 397. https://doi.org/10.1186/s12916-022-02610-y
  7. Brown, M. C., Best, K. E., Pearce, M. S., Waugh, J., Robson, S. C., & Bell, R. (2013). Cardiovascular disease risk in women with pre-eclampsia: systematic review and meta-analysis. European Journal of Epidemiology, 28(1), 1–19. https://doi.org/10.1007/s10654-013-9762-6
  8. Burton, G. J., Redman, C. W., Roberts, J. M., & Moffett, A. (2019). Pre-eclampsia: pathophysiology and clinical implications. Bmj, 366. https://doi.org/10.1136/bmj.l2381
  9. Cavalli, S., Lonati, P. A., Gerosa, M., Caporali, R., Cimaz, R., & Chighizola, C. B. (2022). Beyond systemic lupus erythematosus and anti-phospholipid syndrome: the relevance of complement from pathogenesis to pregnancy outcome in other systemic rheumatologic diseases. Frontiers in Pharmacology, 13, 841785. https://doi.org/10.3389/fphar.2022.841785
  10. Delforce, S. J., Lumbers, E. R., Ellery, S. J., Murthi, P., & Pringle, K. G. (2019). Dysregulation of the placental renin–angiotensin system in human fetal growth restriction. Reproduction, 158(3), 237–245. https://doi.org/10.1530/REP-18-0633
  11. Divella, R., De Luca, R., Abbate, I., Naglieri, E., & Daniele, A. (2016). Obesity and cancer: the role of adipose tissue and adipo-cytokines-induced chronic inflammation. Journal of Cancer, 7(15), 2346. https://doi.org/10.7150/jca.16884
  12. Echeverria, C., Eltit, F., Santibanez, J. F., Gatica, S., Cabello-Verrugio, C., & Simon, F. (2020). Endothelial dysfunction in pregnancy metabolic disorders. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1866(2), 165414. https://doi.org/https://doi.org/10.1016/j.bbadis.2019.02.009
  13. Elgazzaz, M., Woodham, P. C., Maher, J., & Faulkner, J. L. (2024). Implications of pregnancy on cardiometabolic disease risk: preeclampsia and gestational diabetes. American Journal of Physiology-Cell Physiology, 327(3), C646–C660. https://doi.org/10.1152/ajpcell.00293.2024
  14. Grieger, J. A., Hutchesson, M. J., Cooray, S. D., Bahri Khomami, M., Zaman, S., Segan, L., Teede, H., & Moran, L. J. (2021). A review of maternal overweight and obesity and its impact on cardiometabolic outcomes during pregnancy and postpartum. Therapeutic Advances in Reproductive Health, 15, 2633494120986544. https://doi.org/10.1177/2633494120986544
  15. Hahka, T. M., Slotkowski, R. A., Akbar, A., VanOrmer, M. C., Sembajwe, L. F., Ssekandi, A. M., Namaganda, A., Muwonge, H., Kasolo, J. N., Nakimuli, A., Mwesigwa, N., Ishimwe, J. A., Kalyesubula, R., Kirabo, A., Anderson Berry, A. L., & Patel, K. P. (2024). Hypertension Related Co-Morbidities and Complications in Women of Sub-Saharan Africa: A Brief Review. Circulation Research, 134(4), 459–473. https://doi.org/10.1161/CIRCRESAHA.123.324077
  16. Lewandowska, M., Więckowska, B., & Sajdak, S. (2020). Pre-pregnancy obesity, excessive gestational weight gain, and the risk of pregnancy-induced hypertension and gestational diabetes mellitus. Journal of Clinical Medicine, 9(6), 1980. https://doi.org/10.3390/jcm9061980
  17. Lynch, S., Killeen, S. L., O’Brien, E., Mullane, K., Hokey, E., Mealy, G., & McAuliffe, F. M. (2024). Diet quality and blood pressure among pregnant women with overweight or obesity: A secondary analysis of two randomized controlled trials. Acta Obstetricia et Gynecologica Scandinavica, 103(6), 1073–1082. https://doi.org/10.1111/aogs.14821
  18. Maryam, Varghese, T. P., & B, T. (2024). Unraveling the complex pathophysiology of heart failure: insights into the role of renin-angiotensin-aldosterone system (RAAS) and sympathetic nervous system (SNS). Current Problems in Cardiology, 49(4), 102411. https://doi.org/https://doi.org/10.1016/j.cpcardiol.2024.102411
  19. Mol, B. W. J., Roberts, C. T., Thangaratinam, S., Magee, L. A., De Groot, C. J. M., & Hofmeyr, G. J. (2016). Pre-eclampsia. The Lancet, 387(10022), 999–1011. https://doi.org/10.1016/S0140-6736(15)00070-7
  20. Obeagu, E. I., & Obeagu, G. U. (2024). Hypoxia and Pregnancy: The Role of Genetics and Epigenetics. Elite Journal of Medical Sciences, 2(8), 24–36. https://www.academia.edu/download/117799032/3.pdf.
  21. Ortega, M. A., Fraile-Martínez, O., García-Montero, C., Sáez, M. A., Álvarez-Mon, M. A., Torres-Carranza, D., Álvarez-Mon, M., Bujan, J., García-Honduvilla, N., & Bravo, C. (2022). The pivotal role of the placenta in normal and pathological pregnancies: a focus on preeclampsia, fetal growth restriction, and maternal chronic venous disease. Cells, 11(3), 568. https://doi.org/10.3390/cells11030568
  22. Ottanelli, S., Napoli, A., Festa, C., Clemenza, S., & Mecacci, F. (2020). Hypertension and preeclampsia in pregnancy complicated by diabetes. In Gestational Diabetes (Vol. 28, pp. 171–182). Karger Publishers. https://doi.org/10.1159/000480173
  23. Padilla, J., Manrique-Acevedo, C., & Martinez-Lemus, L. A. (2022). New insights into mechanisms of endothelial insulin resistance in type 2 diabetes. American Journal of Physiology-Heart and Circulatory Physiology, 323(6), H1231–H1238. https://doi.org/10.1152/ajpheart.00537.2022
  24. Pazoki, R., Dehghan, A., Evangelou, E., Warren, H., Gao, H., Caulfield, M., Elliott, P., & Tzoulaki, I. (2018). Genetic Predisposition to High Blood Pressure and Lifestyle Factors. Circulation, 137(7), 653–661. https://doi.org/10.1161/CIRCULATIONAHA.117.030898
  25. Plows, J. F., Stanley, J. L., Baker, P. N., Reynolds, C. M., & Vickers, M. H. (2018). The pathophysiology of gestational diabetes mellitus. International Journal of Molecular Sciences, 19(11), 3342. https://doi.org/10.3390/ijms19113342
  26. Possomato-Vieira, J. S., & Khalil, R. A. (2016). Chapter Eleven - Mechanisms of Endothelial Dysfunction in Hypertensive Pregnancy and Preeclampsia. In R. A. B. T.-A. in P. Khalil (Ed.), Endothelium (Vol. 77, pp. 361–431). Academic Press. https://doi.org/https://doi.org/10.1016/bs.apha.2016.04.008
  27. Poston, L., Caleyachetty, R., Cnattingius, S., Corvalán, C., Uauy, R., Herring, S., & Gillman, M. W. (2016). Preconceptional and maternal obesity: epidemiology and health consequences. The Lancet Diabetes & Endocrinology, 4(12), 1025–1036. https://doi.org/10.1016/S2213-8587(16)30217-0
  28. Reed, J., Case, S., & Rijhsinghani, A. (2023). Maternal obesity: perinatal implications. SAGE Open Medicine, 11, 20503121231176130. https://doi.org/10.1177/20503121231176128
  29. Spradley, F. T., Palei, A. C., & Granger, J. P. (2015). Immune mechanisms linking obesity and preeclampsia. Biomolecules, 5(4), 3142–3176. https://doi.org/10.3390/biom5043142
  30. Stannard, S., Owen, R. K., Berrington, A., Ziauddeen, N., Fraser, S. D. S., Paranjothy, S., Hoyle, R. B., & Alwan, N. A. (2024). Exploring the Relationship Between Early Life Exposures and the Comorbidity of Obesity and Hypertension: Findings from the 1970 The British Cohort Study (BCS70). MedRxiv, 2005–2024. https://doi.org/10.1101/2024.05.13.24307277
  31. Steegers, E. A., von Dadelszen, P., Duvekot, J. J., & Pijnenborg, R. (2010). Pre-eclampsia. Lancet (London, England), 376(9741), 631–644. https://doi.org/0.1016/s0140-6736(10)60279-6
  32. Suwannasrisuk, P., Boonchaya-anant, P., Houngngam, N., & Udomsawaengsup, S. (2020). Changes in plasma aldosterone level after weight loss by bariatric surgery in morbidly obese patients. 4, 1–6.
  33. Tan, Y., Yang, S., Liu, Q., Li, Z., Mu, R., Qiao, J., & Cui, L. (2022). Pregnancy-related complications in systemic lupus erythematosus. Journal of Autoimmunity, 132, 102864. https://doi.org/https://doi.org/10.1016/j.jaut.2022.102864
  34. Thomopoulos, C., Hitij, J. B., De Backer, T., Gkaliagkousi, E., Kreutz, R., Lopez-Sublet, M., Marketou, M., Mihailidou, A. S., Olszanecka, A., & Pechère-Bertschi, A. (2024). Management of hypertensive disorders in pregnancy: a Position Statement of the European Society of Hypertension Working Group ‘Hypertension in Women.’ Journal of Hypertension, 42(7), 1109–1132. https://doi.org/10.1097/HJH.0000000000003739
  35. Xue, C., Chen, K., Gao, Z., Bao, T., Dong, L. S., Zhao, L., Tong, X., & Li, X. (2023). Common mechanisms underlying diabetic vascular complications: focus on the interaction of metabolic disorders, immuno-inflammation, and endothelial dysfunction. Cell Communication and Signaling, 21(1), 1–18. https://doi.org/10.1186/s12964-022-01016-w
  36. Yaacoub, S., Boudaka, A., AlKhatib, A., Pintus, G., Sahebkar, A., Kobeissy, F., & Eid, A. H. (2024). The pharmaco-epigenetics of hypertension: a focus on microRNA. Molecular and Cellular Biochemistry, 479(12), 3255–3271. https://doi.org/10.1007/s11010-024-04947-9
  37. Yokota, R., Bhunu, B., Toba, H., & Intapad, S. (2021). Sphingolipids and kidney disease: possible role of preeclampsia and intrauterine growth restriction (IUGR). Kidney360, 2(3), 534–541. https://doi.org/10.34067/KID.0006322020
  38. Yuan, X., Guo, M., Li, Y., Han, Y., & Li, P. (2020). Association Between eNOS, MMP-9, BAG-6 Gene Polymorphisms and Risk of Hypertensive Disorders of Pregnancy in the Northern Chinese Population. DNA and Cell Biology, 40(2), 393–404. https://doi.org/10.1089/dna.2020.6124
  39. Zhu, X., Jiang, P., Ying, X., Tang, X., Deng, Y., Gao, X., & Yang, X. (2024). Pregnancy induced hypertension and umbilical cord blood DNA methylation in newborns: an epigenome-wide DNA methylation study. BMC Pregnancy and Childbirth, 24(1), 433. https://doi.org/10.1186/s12884-024-06623-8