Main Article Content

Abstract

Purpose: This study examines the challenges and strategies of adopting new technologies to enhance organizational growth and competitiveness in the digital era. It focuses on identifying financial, skill-based, cultural, and external barriers and exploring practical approaches to overcoming them.


Research Design and Methodology: A qualitative systematic literature review (SLR) method was employed, synthesizing findings from peer-reviewed articles and academic sources. This approach allowed for a comprehensive analysis of empirical and theoretical perspectives, integrating concepts from innovation diffusion, financial management, and organizational change theories.


Findings and Discussion: The study identifies financial constraints, skill gaps, resistance to change, and external factors such as regulatory challenges and inadequate digital infrastructure as critical barriers to technology adoption. It highlights the dynamic interactions among these barriers, revealing how they collectively influence organizational readiness for digital transformation. Strategies such as pilot testing, portfolio diversification, continuous employee training, and regulatory alignment are discussed as essential for overcoming these challenges. The findings also emphasize the role of advanced technologies like Artificial Intelligence (AI), the Internet of Things (IoT), and cloud computing in driving operational efficiency, innovation, and market competitiveness.


Implications: The research contributes to academic discourse by offering a holistic framework for understanding technology adoption challenges. Practically, it provides actionable insights for organizations to foster a culture of innovation and align technological initiatives with business goals. Policymakers are urged to invest in digital infrastructure and create supportive regulations to facilitate sustainable digital transformation.

Keywords

Technology Adoption Digital Transformation Financial Constraints Innovation Diffusion Organizational Competitiveness

Article Details

How to Cite
Tajuddin, I. (2025). Challenges of New Technology Adoption in Improving Company Growth and Competitiveness. Advances in Economics & Financial Studies, 3(1), 56–70. https://doi.org/10.60079/aefs.v3i1.458

References

  1. Alaba, F. A., Othman, M., Hashem, I. A. T., & Alotaibi, F. (2017). Internet of Things security: A survey. Journal of Network and Computer Applications, 88, 10–28. https://doi.org/https://doi.org/10.1016/j.jnca.2017.04.002
  2. Barth, C., & Koch, S. (2019). Critical success factors in ERP upgrade projects. Industrial Management & Data Systems, 119(3), 656–675. https://doi.org/10.1108/IMDS-01-2018-0016
  3. Bharadwaj, A., El Sawy, O. A., Pavlou, P. A., & Venkatraman, N. (2013). Digital Business Strategy: Toward a Next Generation of Insights. MIS Quarterly, 37(2), 471–482. http://www.jstor.org/stable/43825919
  4. Call, D. R., & Herber, D. R. (2022). Applicability of the diffusion of innovation theory to accelerate model‐based systems engineering adoption. Systems Engineering, 25(6), 574–583. https://doi.org/10.1002/sys.21638
  5. Chowdhury, S., Budhwar, P., & Wood, G. (2024). Generative artificial intelligence in business: towards a strategic human resource management framework. British Journal of Management. https://doi.org/10.1111/1467-8551.12824
  6. Felicetti, A. M., Corvello, V., & Ammirato, S. (2024). Digital innovation in entrepreneurial firms: a systematic literature review. Review of Managerial Science, 18(2), 315–362. https://doi.org/10.1007/s11846-023-00638-9
  7. Fischer, T. (2024). Driving Business Growth through AI-Driven Customer Insights: Leveraging Big Data Analytics for Competitive Advantage. Journal of Artificial Intelligence Research and Applications, 4(1 SE-Articles), 56–72. https://aimlstudies.co.uk/index.php/jaira/article/view/15
  8. Fosso Wamba, S., Gunasekaran, A., Akter, S., Ren, S. J., Dubey, R., & Childe, S. J. (2017). Big data analytics and firm performance: Effects of dynamic capabilities. Journal of Business Research, 70(C), 356–365. https://doi.org/10.1016/j.jbusres.2016.08.009
  9. Frei-Landau, R., Muchnik-Rozanov, Y., & Avidov-Ungar, O. (2022). Using Rogers’ diffusion of innovation theory to conceptualize the mobile-learning adoption process in teacher education in the COVID-19 era. Education and Information Technologies, 27(9), 12811–12838. https://doi.org/10.1007/s10639-022-11148-8
  10. Galarza-Sánchez, P. C. (2023). Adopción de Tecnologías de la Información en las PYMEs Ecuatorianas: Factores y Desafíos. Revista Científica Zambos, 2(1), 21–40. https://doi.org/10.69484/rcz/v2/n1/36
  11. Hanelt, A., Bohnsack, R., Marz, D., & Antunes Marante, C. (2021). A systematic review of the literature on digital transformation: Insights and implications for strategy and organizational change. Journal of Management Studies, 58(5), 1159–1197. https://doi.org/10.1111/joms.12639
  12. Hariyanti, S., & Kristanti, D. (2024). Digital Transformation in MSMEs: an Overview of Challenges and Opportunities in Adopting Digital Technology. Jurnal Manajemen Bisnis, Akuntansi Dan Keuangan, 3(1), 37–46. https://doi.org/10.55927/jambak.v3i1.8766
  13. Hendrawan, S. A., Chatra, A., Iman, N., Hidayatullah, S., & Suprayitno, D. (2024). Digital transformation in MSMEs: Challenges and opportunities in technology management. Jurnal Informasi Dan Teknologi, 141–149. https://doi.org/10.60083/jidt.v6i2.551
  14. Herath, H. M. S. S., Herath, H. M. K. K. M. B., Madhusanka, B. G. D. A., & Guruge, L. G. P. K. (2024). Data Protection Challenges in the Processing of Sensitive Data BT - Data Protection: The Wake of AI and Machine Learning (C. Hewage, L. Yasakethu, & D. N. K. Jayakody (eds.); pp. 155–179). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-76473-8_8
  15. Holt, D. T., Armenakis, A. A., Feild, H. S., & Harris, S. G. (2007). Readiness for organizational change: The systematic development of a scale. The Journal of Applied Behavioral Science, 43(2), 232–255.
  16. Jöhnk, J., Weißert, M., & Wyrtki, K. (2021). Ready or Not, AI Comes— An Interview Study of Organizational AI Readiness Factors. Business & Information Systems Engineering, 63(1), 5–20. https://doi.org/10.1007/s12599-020-00676-7
  17. Junaedi, A. T., Panjaitan, H. P., Yovita, I., Veronica, K., Renaldo, N., & Jahrizal, J. (2024). Advancing Digital and Technology Literacy through Qualitative Studies to Bridging the Skills Gap in the Digital Age. Journal of Applied Business and Technology, 5(2 SE-Articles), 123–133. https://doi.org/10.35145/jabt.v5i2.170
  18. khalil, M. I., & Abdel-Rahman, M. (2023). Advanced Cybersecurity Measures in IT Service Operations and Their Crucial Role in Safeguarding Enterprise Data in a Connected World. Eigenpub Review of Science and Technology , 7(1 SE-Articles), 138–158. https://studies.eigenpub.com/index.php/erst/article/view/14
  19. Khan, A. Q., Matskin, M., Prodan, R., Bussler, C., Roman, D., & Soylu, A. (2024). Cloud storage cost: a taxonomy and survey. World Wide Web, 27(4), 36. https://doi.org/10.1007/s11280-024-01273-4
  20. Kwon, W.-S., Woo, H., Sadachar, A., & Huang, X. (2021). External pressure or internal culture? An innovation diffusion theory account of small retail businesses’ social media use. Journal of Retailing and Consumer Services, 62, 102616. https://doi.org/https://doi.org/10.1016/j.jretconser.2021.102616
  21. Li, L. (2022). Reskilling and upskilling the future-ready workforce for industry 4.0 and beyond. Information Systems Frontiers, 1–16. https://doi.org/10.1007/s10796-022-10308-y
  22. Li, L., Su, F., Zhang, W., & Mao, J. (2018). Digital transformation by SME entrepreneurs: A capability perspective. Information Systems Journal, 28(6), 1129–1157. https://doi.org/10.1111/isj.12153
  23. Limberg, J., Knill, C., & Steinebach, Y. (2023). Condemned to complexity? Growing state activity and complex policy systems. Governance, 36(2), 575–608. https://doi.org/10.1111/gove.12684
  24. Lin, F. (2021). Understanding diffusion of recurrent innovations. ArXiv Preprint ArXiv:2101.05094. https://doi.org/10.1145/3626189
  25. Maria, V., Rizky, S. D., & Akram, A. M. (2024). Mengamati Perkembangan Teknologi dan Bisnis Digital dalam Transisi Menuju Era Industri 5.0. Wawasan: Jurnal Ilmu Manajemen, Ekonomi Dan Kewirausahaan, 2(3), 175–187. https://doi.org/10.58192/wawasan.v2i3.2239
  26. Maroufkhani, P., Wan Ismail, W. K., & Ghobakhloo, M. (2020). Big data analytics adoption model for small and medium enterprises. Journal of Science and Technology Policy Management, 11(4), 483–513. https://doi.org/10.1108/JSTPM-02-2020-0018
  27. Martínez-Peláez, R., Ochoa-Brust, A., Rivera, S., Félix, V. G., Ostos, R., Brito, H., Félix, R. A., & Mena, L. J. (2023). Role of digital transformation for achieving sustainability: mediated role of stakeholders, key capabilities, and technology. Sustainability, 15(14), 11221. https://doi.org/10.3390/su151411221
  28. Mishrif, A., & Khan, A. (2023). Technology adoption as survival strategy for small and medium enterprises during COVID-19. Journal of Innovation and Entrepreneurship, 12(1), 53. https://doi.org/10.1186/s13731-023-00317-9
  29. Mohammadi, M., Al-Fuqaha, A., Sorour, S., & Guizani, M. (2018). Deep Learning for IoT Big Data and Streaming Analytics: A Survey. IEEE Communications Surveys & Tutorials, 20(4), 2923–2960. https://doi.org/10.1109/COMST.2018.2844341
  30. Neiroukh, S., Emeagwali, O. L., & Aljuhmani, H. Y. (2024). Artificial intelligence capability and organizational performance: unraveling the mediating mechanisms of decision-making processes. Management Decision, ahead-of-print(ahead-of-print). https://doi.org/10.1108/MD-10-2023-1946
  31. Pineda, A. M., Reia, S. M., Connaughton, C., Fontanari, J. F., & Rodrigues, F. A. (2023). Cultural heterogeneity constrains diffusion of innovations. Europhysics Letters, 143(4), 42003. https://doi.org/10.1209/0295-5075/aceeab
  32. Rane, N. (2023). Enhancing customer loyalty through Artificial Intelligence (AI), Internet of Things (IoT), and Big Data technologies: improving customer satisfaction, engagement, relationship, and experience. Internet of Things (IoT), and Big Data Technologies: Improving Customer Satisfaction, Engagement, Relationship, and Experience (October 13, 2023). https://doi.org/10.2139/ssrn.4616051
  33. Raza, M., Khokhar, M. F., Zubair, M., & Rubab, M. (2023). Impact of Transparent Communication in HR Governance: Fostering Employee Trust and Engagement. Bulletin of Business and Economics (BBE), 12(3), 558–566. https://doi.org/10.61506/01.00068
  34. Rogers, E. M. (2003). Diffusion of innovations, 5th edn Tampa. FL: Free Press.[Google Scholar].
  35. Ryketeng, M., Syachbrani, W., & Syamsuri. (2023). Optimising Human Resources Capacity: Driving Adoption of Latest Technology and Driving Business Innovation amidst the Dynamics of the Digital Era. Journal of Contemporary Administration and Management (ADMAN), 1(3 SE-Articles), 229–236. https://doi.org/10.61100/adman.v1i3.86
  36. Shehadeh, M. (2024). Digital Transformation: A Catalyst for Sustainable Business Practices. In A. Hamdan (Ed.), Technological Innovations for Business, Education and Sustainability (pp. 29–45). Emerald Publishing Limited. https://doi.org/10.1108/978-1-83753-106-620241003
  37. Shultz, G. P., Hoagland, J., & Timbie, J. (2018). Beyond disruption: technology’s challenge to governance. Hoover Press.
  38. Tran, Q. T. (2024). Dividend Policy Theories and Empirical Evidence. In Dividend Policy (pp. 29–41). Emerald Publishing Limited. https://doi.org/10.1108/978-1-83797-987-520241005
  39. Yin, S., & Kaynak, O. (2015). Big Data for Modern Industry: Challenges and Trends [Point of View]. Proceedings of the IEEE, 103(2), 143–146. https://doi.org/10.1109/JPROC.2015.2388958
  40. Zhai, Y., Ding, Y., & Zhang, H. (2021). Innovation adoption: Broadcasting vs. Virality. ArXiv Preprint ArXiv:2103.04663. https://doi.org/10.1002/asi.24420