Main Article Content

Abstract

Purpose: This study evaluates companies' constraints in market data collection and analysis for developing accurate marketing strategies. It explores how fragmented data sources, inconsistent data quality, technological limitations, and organizational challenges hinder effective data-driven decision-making.


Research Design and Methodology: This research employs a qualitative approach through a systematic literature review (SLR), synthesizing insights from peer-reviewed journals, books, and credible databases. The analysis identifies common themes, challenges, and best practices in marketing strategy development related to market data management.


Findings and Discussion: The study identifies key challenges, including fragmented data platforms, inconsistent data standards, limited adoption of advanced analytical technologies, and organizational silos. These constraints lead to ineffective marketing strategies due to poor data integration and limited insights. The findings emphasize the importance of adopting advanced technologies, such as artificial intelligence (AI), machine learning (ML), and cloud-based platforms, alongside strengthening cross-functional collaboration and data literacy within organizations.


Implications: This study provides valuable insights for both academia and industry. For practitioners, it offers actionable strategies for overcoming data-related challenges, including investing in integrated data platforms, promoting cross-departmental collaboration, and enhancing employee analytical skills. Academically, it enriches existing literature by bridging theoretical frameworks with practical applications. Future research should focus on empirical validation and industry-specific case studies to further advance understanding in this field.

Keywords

market data analysis marketing strategy data-driven decision-making advanced analytics cross-functional collaboration

Article Details

How to Cite
Haris, A. (2025). Market Data Collection and Analysis Challenges for Accurate Marketing Strategies. Advances in Business & Industrial Marketing Research, 3(3), 163–176. https://doi.org/10.60079/abim.v3i3.639

References

  1. Alqarni, K., Agina, M. F., Khairy, H. A., Al-Romeedy, B. S., Farrag, D. A., & Abdallah, R. M. (2023). The effect of electronic human resource management systems on sustainable competitive advantages: the roles of sustainable innovation and organizational agility. Sustainability, 15(23), 16382. https://doi.org/10.3390/su152316382
  2. Alt, R., & Reinhold, O. (2020). Social customer relationship management. An Introduction to Social Media Marketing, 72–75. https://doi.org/10.1007/978-3-030-23343-3
  3. Ambasht, A. (2023). Real-Time Data Integration and Analytics: Empowering Data-Driven Decision Making. International Journal of Computer Trends and Technology, 71(7), 8–14. https://doi.org/10.14445/22312803/ijctt-v71i7p102
  4. Attah, R. U., Garba, B. M. P., Gil-Ozoudeh, I., & Iwuanyanwu, O. (2024). Cross-functional team dynamics in technology management: a comprehensive review of efficiency and innovation enhancement. Eng Sci Technol J, 5(12), 3248–3265.
  5. Barney, J. B. (1991). Resource-Based View (RBV) theory. Firm Resources and Sustained Competitive Advantage. Journal of Management, 17(1), 99–120.
  6. Benslama, T., & Jallouli, R. (2024). An empirical study of the impact of social media data analytics on marketing strategy: Which social media data analytics metrics to select? Journal of Telecommunications and the Digital Economy, 12(1), 575–594. https://doi.org/10.18080/jtde.v12n1.830
  7. Blacksmith, N., & McCusker, M. E. (2024). Data-driven Decision Making in Entrepreneurship: Tools for Maximizing Human Capital. CRC Press.
  8. Blasco-Arcas, L., Lee, H.-H. M., Kastanakis, M. N., Alcañiz, M., & Reyes-Menendez, A. (2022). The role of consumer data in marketing: A research agenda. Journal of Business Research, 146, 436–452. https://doi.org/https://doi.org/10.1016/j.jbusres.2022.03.054
  9. Chaffey, D., Ellis-Chadwick, F., & Mayer, R. (2009). Internet marketing: strategy, implementation and practice. Pearson education.
  10. Chinta, S. (2022). Integrating Artificial Intelligence with Cloud Business Intelligence: Enhancing Predictive Analytics and Data Visualization. IRE Journals, 5(9), 639–650. https://ssrn.com/abstract=5046565
  11. Cokins, G. (2009). Performance management: Integrating strategy execution, methodologies, risk, and analytics. John Wiley & Sons.
  12. Dasgupta, D., & Sahai, A. K. (2021). Electronic customer relationship management (eCRM). In Digitization of Economy and Society (pp. 293–319). Apple Academic Press.
  13. Dhayne, H., Haque, R., Kilany, R., & Taher, Y. (2019). In Search of Big Medical Data Integration Solutions - A Comprehensive Survey. IEEE Access, 7, 91265–91290. https://doi.org/10.1109/ACCESS.2019.2927491
  14. Fadli, M. F. (2021). Strategi Pemasaran Untuk Meningkatkan Keunggulan Kompetitif Pada PT. Telkom Pontianak. Jurnal Ekonomi Integra, 11(1), 1–12. https://doi.org/10.51195/IGA.V11I1.148
  15. Fedorova, N., Glinscaya, A., Panfilov, I., Voronina, E., & Markovskaia, E. (2024). Cost-effectiveness of development strategy implementation: Key metrics and analysis methods for successful enterprise management. BIO Web of Conferences, 116, 5003. https://doi.org/10.1051/bioconf/202411605003
  16. Fleisher, C. S. (2008). Using open source data in developing competitive and marketing intelligence. European Journal of Marketing, 42(7/8), 852–866. https://doi.org/10.1108/03090560810877196
  17. Gade, K. R. (2021). Data-driven decision making in a complex world. Journal of Computational Innovation, 1(1). https://researchworkx.com/index.php/jci/article/view/2
  18. Haque, A., Akther, N., Khan, I., Agarwal, K., & Uddin, N. (2024). Artificial Intelligence in Retail Marketing: Research Agenda Based on Bibliometric Reflection and Content Analysis (2000–2023). Informatics, 11(4), 74. https://doi.org/10.3390/informatics11040074
  19. Housden, M. (2013). CIM Coursebook 06/07 Marketing Research and Information. Routledge.
  20. Jeleel-Ojuade, A. (2024). The Role of Information Silos: An analysis of how the categorization of information creates silos within financial institutions, hindering effective communication and collaboration. Available at SSRN 4881342. https://doi.org/10.2139/ssrn.4881342
  21. JIhua, S., & Lin, S. (2024). Research on Data-driven Marketing Strategy Optimization [J]. Journal of Business and Marketing, 1(2). https://doi.org/10.62517/jbm.202409224
  22. Karunamurthy, A., Yuvaraj, M., Shahithya, J., & Thenmozhi, V. (2023). Cloud database: Empowering scalable and flexible data management. Quing: International Journal of Innovative Research in Science and Engineering.
  23. Khatam, D. (2022). Regulating Data Privacy in the Age of Surveillance Capitalism: The Making of the European General Data Protection Regulation and the California Consumer Privacy Act. Stanford University.
  24. Kotler, P., Keller, K. L., Brady, M., Goodman, M., & Hansen, T. (2016). Marketing Management 3rd edn PDF eBook. Pearson Higher Ed.
  25. Leistner, F. (2012). Connecting organizational silos: Taking knowledge flow management to the next level with social media. John Wiley & Sons.
  26. Linden, R. M. (2003). Working across boundaries: Making collaboration work in government and nonprofit organizations. John Wiley & Sons.
  27. Liu, Q., Wan, H., & Yu, H. (2023). Application and influence of big data analysis in marketing strategy. Frontiers in Business, Economics and Management, 9(3), 168–171. https://doi.org/10.54097/fbem.v9i3.9580
  28. Mikalef, P., Pappas, I. O., Krogstie, J., & Giannakos, M. (2018). Big data analytics capabilities: a systematic literature review and research agenda. Information Systems and E-Business Management, 16(3), 547–578. https://doi.org/10.1007/s10257-017-0362-y
  29. Mitra, D., & Singh, M. (2023). Marketing Analytics: A Key to Market Success. Shineeks Publishers.
  30. Nafi’Hasbi, M. Z., Al Farisi, M. S., Cahyani, Y. T., & Kusbiantoro, S. (2021). Strategi Pemasaran Usaha Pp. Riyadlul Jannah Pacet Mojokerto Perspektif Ilmu Ekonomi Syariah. Jurnal Riset Entrepreneurship, 4(2), 19–25. https://doi.org/10.30587/jre.v4i2.2544
  31. Osterwalder, A., Pigneur, Y., Bernarda, G., & Smith, A. (2015). Value proposition design: How to create products and services customers want. John Wiley & Sons.
  32. Patrick Azuka Okeleke, Daniel Ajiga, Samuel Olaoluwa Folorunsho, & Chinedu Ezeigweneme. (2024). Predictive analytics for market trends using AI: A study in consumer behavior. International Journal of Engineering Research Updates, 7(1), 036–049. https://doi.org/10.53430/ijeru.2024.7.1.0032
  33. Rao, A., & Brown, M. (2024). A Review of the Resource-Based View (RBV) in Strategic Marketing: Leveraging Firm Resources for Competitive Advantage. Business, Marketing, and Finance Open, 1(3 SE-Articles), 25–35. https://bmfopen.com/index.php/bmfopen/article/view/15
  34. Rosário, A. T., & Dias, J. C. (2023). How has data-driven marketing evolved: Challenges and opportunities with emerging technologies. International Journal of Information Management Data Insights, 3(2), 100203. https://doi.org/https://doi.org/10.1016/j.jjimei.2023.100203
  35. Rothberg, H. N., & Erickson, G. S. (2005). From knowledge to intelligence: Creating competitive advantage in the next economy. Routledge.
  36. Shahnawaz, M., & Kumar, M. (2025). A Comprehensive Survey on Big Data Analytics: Characteristics, Tools and Techniques. ACM Computing Surveys. https://doi.org/10.1145/3718364
  37. Sugiana, N. S. S., & Musty, B. (2023). Analisis Data Sistem Informasi Monitoring Marketing; Tools Pengambilan Keputusan Strategic. Jutisi: Jurnal Ilmiah Teknik Informatika Dan Sistem Informasi, 12(2), 696–708. https://doi.org/10.35889/jutisi.v12i2.1240
  38. Suhairi, S., Nurhazizah, N., Syanda, S., & Nasution, R. A. (2024). Transformasi Digital Riset Pemasaran Global dengan Integrasi Teknologi Terkini untuk Menyusun Strategi Responsif terhadap Perubahan Pasar Global. As-Syirkah: Islamic Economic & Financial Journal, 3(2), 637–647. https://doi.org/10.56672/syirkah.v3i2.175
  39. Theodorakopoulos, L., & Theodoropoulou, A. (2024). Leveraging big data analytics for understanding consumer behavior in digital marketing: A systematic review. Human Behavior and Emerging Technologies, 2024(1), 3641502. https://doi.org/10.1155/2024/3641502
  40. Uloma Stella Nwabekee, Oluwatosin Yetunde Abdul-Azeez, Edith Ebele Agu, & Tochukwu Ignatius Ijomah. (2024). Digital transformation in marketing strategies: The role of data analytics and CRM tools. International Journal of Frontline Research in Science and Technology, 3(2), 055–072. https://doi.org/10.56355/ijfrst.2024.3.2.0047
  41. Vesterinen, M., Mero, J., & Skippari, M. (2024). Big data analytics capability, marketing agility, and firm performance: a conceptual framework. Journal of Marketing Theory and Practice, 1–21. https://doi.org/10.1080/10696679.2024.2322600
  42. Wang, X. (2021). Accurate marketing strategies based on data analytics. Journal of Physics: Conference Series, 1744(4), 42201. https://doi.org/10.1088/1742-6596/1744/4/042201
  43. Yulianti, I. (2019). Metode analisis RBV (resources-based view) untuk merumuskan keunggulan bersaing pada PT Ciesta Mandiri Sejahtera Cabang Jember 2. Doctoral dissertation. Universitas Muhammadiyah Jember.